
Performance comparison of kbmMemTable Std/Pro and AnyDAC CDS

Something that make me trigger is when someone claims their stuff is faster than my stuff....
I dont know if it has something to do with the 'mine is bigger than yours' male ego thing, but nevertheless, I always
trigger on those type statements :)

Anyway, the author behind the free (and seemingly nice) DB API abstraction framework, AnyDAC has now repeatedly
claimed that their client dataset implementation is faster and more fullfeatured than kbmMemTable, although
recognizing that kbmMemTable Pro may be faster than their product.

Now I decided to have a look at the performance side, to test if their claims really holds true.

We are using the old slightly modified benchmark program that we also used in our earlier battle against another
vendor claiming superiority (and that was originally created by them).
The author behind AnyDAC also use a variant of that original application for their tests.

The following benchmarks has been run on a 2.8Ghz hyperthreading P4 with 2GB memory and lots of disks and
diskspace.

Each vendors tests have been benchmarked seperately.
Hence we have stopped and started the application between each vendor test to try to ensure level playing grounds.

We have waited until the CPU usage has stabilized to 97-98% idle before actually running the benchmark by clicking
the start button on the application.
When practically possible (which wasnt the case with the AnyDAC 100.000 records test due to lack of my patience),
we have run the benchmark multiple times to allow for variations, and the following represents reasonably stable
measurements. When single measurements have shown instability (by looking exceedingly high) we have rerun the
test and compared the measurements over multiple tests fairly for all vendors/variations.

All values are ms.

All locates in the following are only repeated 1000 times locating different values in the datasets.

This is our first set of benchmarks. As the benchmark system can have contained different loads (specially memory
wise) at time of run, we have decided to
add an additional set of benchmarks further down, documenting kbmMemTable vs AnyDAC also including AnyDAC's
batch mode.

10.000 records
 kbmMT kbmMT kbmMT kbmMT AnyDAC
 non batched batched Pro Pro cds
 non batched batched non batched
Without indexes
Insert: 3266 2563 2656 1953 3167
Edit: 2421 2484 1812 1969 3453
Locate by ID: 375 266 250 266 257
Locate by FInteger: 344 203 187 218 264
Locate by FString: 2188 2156 313 407 550
Delete: 218 250 93 93 1000
Append: 2531 2625 1937 1922 3860
Close: 16 16 15 16 15

With indexes
Insert: 3921 3297 2516 2219 4734
Edit: 5016 3297 2844 2109 6422
Locate by ID: 109 78 47 47 281
Locate by FInteger: 63 62 47 47 313

Locate by FString: 188 109 78 62 625
Delete: 1156 328 422 78 2094
Append: 3844 3297 2584 2344 5265
Close: 15 16 16 15 31

100.000 records

 kbmMT kbmMT kbmMT kbmMT AnyDAC
 non batched batched Pro Pro cds
 non batched batched non batched
Without indexes
Insert: 50017 26469 25594 20015 69031
Edit: 23985 26531 29125 22610 50422
Locate by ID: 234 301 300 265 313
Locate by FInteger: 328 406 251 235 344
Locate by FString: 1859 2547 499 457 688
Delete: 22329 27093 2172 1172 29547
Append: 25843 26391 28203 25062 48953
Close: 157 125 110 109 297

With indexes
Insert: 107843 37797 34937 30563 133656
Edit: 169985 33000 40125 30546 326969
Locate by ID: 47 46 63 63 297
Locate by FInteger: 62 79 125 109 297
Locate by FString: 250 140 187 157 703
Delete: 67453 22453 7906 1406 175531
Append: 71187 34937 33656 30031 84469
Close: 172 157 110 109 312

This is our 2nd run of the benchmarks.
It was created due to we gained new knowledge about a couple of additional optimization parameters that could be
issued on AnyDAC cds, namely a SilentMode property that we were told by the author, should be set to false, and
that AnyDAC CDS also have a batch operation, that can be started with BeginBatch and ended with EndBatch.
BeginBatch takes one optional argument that default is false. Setting it to false makes the tests fail for AnyDAC.
Hence we set it to true.

We have remade all tests again to try to compare on a level ground.
Differences between this benchmark and the above indicates that the machine have had an undocumented load
(probably memory or fragmentation of memory as we monitored CPU), temperature of CPU (newer ones may throttle
speed if getting hot) etc, at the first time of the benchmark.
As values can vary quite alot between runs, we have decided to take the best run out of several for each product and
document that. Thus the values are best possible values out of several runs each.
What can also be interpreted by such benchmarks is that its quite difficult to get 100% stable results on a machine
that runs anything but the benchmark application. The best benchmark to make is probably to calculate the number of
machine code instructions needed to perform the tasks, and according to manuals calculate the time taken for each
and sum it all up. However thats not the point of this test.

10.000 records
 kbmMT kbmMT kbmMT kbmMT AnyDAC AnyDAC
 non batched batched Pro Pro cds cds
 non batched batched non batched batched
Without indexes
Insert: 1047 782 1343 922 2016 860
Edit: 1062 861 1219 1062 2265 906
Locate by ID: 172 109 140 156 157 125

Locate by FInteger: 172 78 110 125 125 94
Locate by FString: 922 704 203 219 344 250
Delete: 94 78 63 31 641 78
Append: 1172 922 1312 1172 2312 1094
Close: 0 0 0 0 15 16

With indexes
Insert: 1750 1156 1593 1297 2937 1234
Edit: 2359 1156 1765 1265 3985 1188
Locate by ID: 32 15 16 15 188 125
Locate by FInteger: 62 15 47 16 125 109
Locate by FString: 94 47 47 31 406 282
Delete: 578 94 250 47 1234 109
Append: 1734 1250 1656 1312 3094 1250
Close: 0 0 16 0 15 16

CPU time 0:11 n/a 0:09 0:07 0:18 n/a

The two n/a CPU time measurements is due to I simply forgot to note them down.

100.000 records

 kbmMT kbmMT kbmMT kbmMT AnyDAC AnyDAC
 non batched batched Pro Pro cds cds
 non batched batched non batched batched
Without indexes
Insert: 24641 13766 13781 11703 41328 25063
Edit: 14266 14625 14687 13093 39187 18469
Locate by ID: 171 203 157 157 235 219
Locate by FInteger: 219 218 156 172 250 281
Locate by FString: 1188 1297 234 235 688 547
Delete: 14328 14203 860 593 23297 11359
Append: 18250 19407 16953 14735 43984 20860
Close: 125 47 78 62 281 235

With indexes
Insert: 82844 27719 25141 19578 111906 41437
Edit: 151390 28765 32828 22094 294953 29672
Locate by ID: 47 46 31 31 297 296
Locate by FInteger: 62 63 63 47 297 313
Locate by FString: 204 109 187 140 656 579
Delete: 61921 19250 6797 981 155562 14187
Append: 62922 31672 31000 23375 76891 30625
Close: 172 94 109 94 297 219

CPU time (min:sec) 6:39 2:40 2:14 1:40 11:36 3:03

If we compare kbmMT Standard non batched with AnyDAC CDS non batched, we see kbmMT being faster
regardless of dataset size, except for searching on strings.
However with 100.000 records we see that kbmMT is being faster by a large margin as it is running the complete test
in approx. 54% the time taken for AnyDAC CDS.
The difference increases almost exponentially with the size of the datasets.

If we compare kbmMT Standard batched with AnyDAC CDS batched, we see kbmMT also being faster overall. On
10.000 records the difference is not big. But at
100.000 records the difference starts to show as kbmMT is running the test in about 88% the time taken for AnyDAC
CDS. We can easily see that AnyDAC CDS performs
substantially better batched than unbatched.

If we then compare kbmMT Pro non batched, we see it being significantly faster than AnyDAC batched, running the

test in approx. 74% the time taken for AnyDAC CDS batched!
And finally comparing kbmMT Pro batched, we see it being very fast, running the test in approx. 54% of the time
taken for AnyDAC CDS batched.

The difference is also indicating to grow with even larger datasets.

In addition I would like to comment, that its always 'easy' to cut functionality away. Essentially the fastest extremely
simple, but quite non functional memory dataset would be to have a simple list where everything is just appended to.
However a memory dataset should keep track of order of insertions etc too. This is for example something
kbmMemTable always keeps track of, regardless if running in batch mode or not. The roworder index is always
updated as that is the only way to guarantee that the order of record insertions/updates/deletes is well known.

Im not the one to give advices to potential competitors... but imo the author should definitely focus his adverticements
on
his frameworks abilities to connect to different databases rather than on performance. His database abstraction API is
what makes his framework
interesting imo. Specially because another free DB API abstraction framework, Zeos, seems to be stalling at the
moment.

As I have now spend lots of precious time that could have been spend on developing our own products, I will not
pursure this subject any longer.
kbmMemTable is (even by competitors) being recognized as the leader in performance as it often is being used as a
reference in benchmarks for competing products. It is obviously a nice thing to be recognized. But its time to start
focusing on other areas instead of the fruitless job of constant chasing kbmMemTable.

Benchmarks may be indicators, but as the reasons for the results are not always easily understood, the benchmarks
may more damaging than useful to people making a choise! You may ultimately end up with something somewhat
faster than kbmMemTable Pro for a specific task, but what is that worth if the overall usability of the component is
destroyed because of the chase for extreme performance?

best regards
Kim Madsen

